

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2			May/June 2011
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

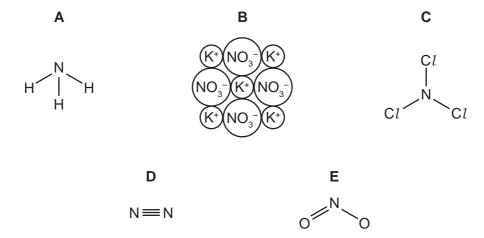
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
Total		

This document consists of 15 printed pages and 1 blank page.

1 The structures of some substances containing nitrogen are shown below.

For Examiner's Use

Answer the following questions by choosing from the structures **A**, **B**, **C**, **D** or **E**. You can use each structure once, more than once or not at all.

Which structure represents

(a) an acidic oxide,
(b) an ionic giant structure,
(c) a gas which turns moist litmus paper blue,
(d) a compound which is formed under conditions of high temperature and pressure in car engines,
(e) a molecule containing halogen atoms,
(f) a salt?

[Total: 6]

© UCLES 2011

For Examiner's Use

				;	3		
2	Van	adium ha	s two isotopes				
				$_{23}^{50}$ V	⁵¹ ₂₃ V		
	(a)	Define th	ne term <i>isotope</i>				
							[1]
	(b)	Complete		ns, electrons an how the number	d neutrons. r of protons, elec	trons and neutro	ns in these two
			isotope	number of protons	number of electrons	number of neutrons	
			⁵⁰ ₂₃ V	23	23		
			$_{23}^{51}V$			28	
						<u> </u>	[3]
	(c)	Complete	e these senten	ces using words	from the list.		
		cance	r extra	industry	influenza	medicine	non
		Two type	es of isotopes	are radioactive	e and	radioactiv	e. Radioactive
		isotopes	are used in	fc	or treating patient	s with	[3]
	(d)				anadium are corr	ect?	
		vana	adium is a non-	metal			
		vana	adium conducts	electricity			
		vana	adium has a lov	w melting point			
		vana	adium is less de	ense than sodiu	m		
		com	pounds of vana	adium are colou	red		
							[2]

[Total: 9]

Examiner's Use

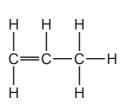
4

3	Wa	ater is present in the atmosphere, the seas and in ice and snow.					
	(a)	Describe a chemical test for water. test					
		res	ult[2]				
	(b)	Sta	te one use of water in industry.				
			[1]				
	(c)		ter is a good solvent. at do you understand by the term solvent?				
			[1]				
	(d)	Wa	ter vapour in the atmosphere reacts with sulfur dioxide, SO ₂ , to produce acid rain.				
		(i)	State one source of sulfur dioxide.				
			[1]				
		(ii)	State two adverse effects of acid rain.				
			1				
			2				
		(iii)	Calculate the relative molecular mass of sulfur dioxide.				
			[1]				
	(e)	Wa	ter from lakes and rivers can be treated to make the water safer to drink.				
			scribe two of the steps in water purification. each of these steps, give an explanation of its purpose.				
		ste	o 1				
		ste	2				
			[4]				

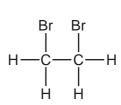
For Examiner's Use

5

(f)	Water is formed when hydrogen burns in air.				
	(i)	State the percentage of oxygen present in the air.			
			[1]		
		When 8 g of hydrogen is burned in excess air, 72 g of water is formed. What mass of hydrogen needs to be burnt to produce 252 g of water?			

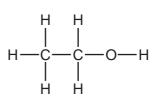

[1]

[Total: 14]


4 The structures of some organic compounds are shown below.

For Examiner's Use

		^		
н—	H -C- H	H -C- H	H -C- H	-н


В

C

D

Ε

- (a) Which one of these structures represents
 - (i) a polymer,

(ii) an unsaturated hydrocarbon,

(iii) the product of the catalytic addition of steam to ethene,

(iv) a product of the addition of aqueous bromine to ethene?

[4]

(b) (i) Balance the equation for the complete combustion of compound ${\bf A}$, ${\bf C_3H_8}$.

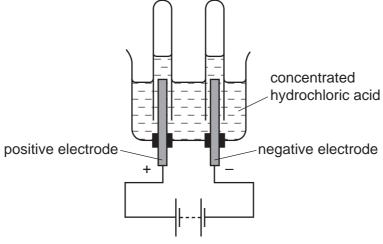
$$\mathrm{C_3H_8} \ + \\mathrm{O_2} \ \rightarrow \ 3\mathrm{CO_2} \ + \\mathrm{H_2O}$$

[2]

(ii) State the name of **two** substances formed when compound **A** undergoes incomplete combustion.

..... and [2]

(c) Complete the structure of ethanoic acid to show all atoms and bonds.



[1]

[Total: 9]

5 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.

(a)	What do you u	inderstand by the	term <i>electrolysi</i> s?			
(b)		me given to the pound the correct ans				
	anion	anode	cathode	cation	electrolyte	[1]
(c)	State the name	e of the gas given	off at the negative	electrode.		
						[1]
(d)	Complete the	following sentence	e about electrolysis	s using words fro	om the list.	
	inert	magnesium	platinum	reactive	solid	
	Electrodes ma	ade of graphite of	or	. are generally	used in electroly	/sis
	because they	are				[2]

For Examiner's Use

(e)		nen concentrated hydrochloric acid is electrolysed, chlorine is released at the positive ectrode.					
	(i)	Draw the arrangement of the electrons in an atom of chlorine.					
	(ii)	Draw the electronic structure of a chlorine molecule. Show only the outer electron shells.	1]				
((iii)	Describe a test for chlorine.					
		test					
		result	2]				
(f)	Нус	drochloric acid reacts with the base calcium hydroxide.					
	(i)	Complete the word equation for this reaction.					
hy	/dro	chloric acid + calcium hydroxide → +					
	(ii)	Hydrochloric acid also reacts with zinc. Complete the symbol equation for this reaction.	2]				
		$Zn + \dots HCl \rightarrow ZnCl_2 + \dots$	2]				
		[Total: 1	_				

A student observed the reaction of various metals with both cold water and steam. Her results are shown below.

For Examiner's Use

metal	reaction with cold water	reaction with steam	
calcium reacts rapidly		reacts very rapidly	
copper	no reaction	no reaction	
magnesium	reacts very slowly	reacts rapidly	
zinc	no reaction	reacts	

(a) (i) Put these metals in order of their reactivity.

least reactive -		→ most reactive

[1]

(ii) Iron is a metal between zinc and copper in the reactivity series. Predict the reactivity of iron with

cold water,	
steam	[2]

(b) The equation for the reaction of zinc with steam is:

$$\rm Zn \ + \ H_2O \ \rightarrow \ ZnO \ + \ H_2$$

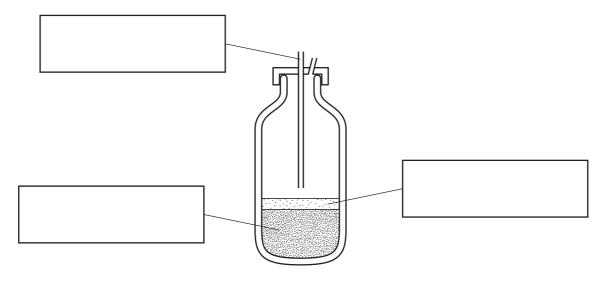
Write a word equation for this reaction.

[1]

(c) State three physical properties which are characteristic of most metals.

1.	 	 	 	
٠.	 	 	 	

(d) Some properties of the Group I metals are shown in the table.


For Examiner's Use

metal	melting point /°C	hardness	density /g per cm³
lithium		fairly hard	0.53
sodium	98	fairly soft	
potassium	63	soft	
rubidium	39	very soft	1.53
caesium	29	extremely soft	1.88

(1)	Estimate the melting point of lithium.	
		[1]
(ii)	How does the hardness of these metals change down the group?	
		[1]
(iii)	Estimate the density of potassium.	
		[1]
	[Total:	101

7 The diagram shows a basic oxygen converter. This is used to convert impure iron from the blast furnace into steel. During this process, some of the impurities in the iron are converted into a slag.

For Examiner's Use

- (a) Label the diagram to show each of the following:
 - where the oxygen enters;
 - the slag;
 - the molten steel.

[3]

(b) In the converter, the oxygen oxidises sulfur, carbon and phosphorus to their oxides.

(i)	Explain converte	•	sulfur	dioxide	an	d car	bon	dioxide	are	easily	ren	noved	from	the
														[1]
(ii)	Explain converte		calciun	n oxide	is	used	to	remove	phos	phorus	(V)	oxide	from	the

.....[3]

Examiner's Use

[Total: 9]

(c) Stainless steel is an alloy.

(i) Which one of the diagrams, A, B, C or D, best represents an alloy? Put a ring around the correct answer.

A B C D

(ii) State one use of stainless steel.

Examiner's Use

Bro	mine	e is a red-brown liquid. When warmed, it forms an orange vapour.
(a)		scribe what happens to the arrangement and motion of the particles when bromine nges state from a liquid to a vapour.
		[3]
(b)	Bro	mine can be obtained from bromide ions in seawater.
	(i)	The symbol equation for this reaction is:
		$Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$
		Complete the word equation for this reaction.
		+ bromide ions → +
	(ii)	Bromine is very volatile, so it can be removed from solution by bubbling air through the solution. What do you understand by the term <i>volatile</i> ?
		[1]
(c)	•	drogen reacts with bromine in the presence of a hot platinum catalyst to form hydrogen mide.
	(i)	Define the term catalyst.
		[1]
	(ii)	Hydrogen bromide reduces hydrogen peroxide, H ₂ O ₂ .
		$2HBr + H_2O_2 \rightarrow Br_2 + 2H_2O$
		Explain how this equation shows that hydrogen peroxide is reduced.
		[1]

8

14

(iii)	A solution of hydrogen bromide in water is called hydrobromic acid. Hydrobromic acid has similar reactions to hydrochloric acid.	For Examiner's Use
	State the names of three products formed when hydrobromic acid reacts with sodium carbonate.	
	[2]	
	[Total: 9]	

15

BLANK PAGE

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

DATA SHEET
The Periodic Table of the Elements

								Gr	Group								
_	=											=	≥	>	5	II/	0
							1 H ydrogen										4 He lium 2
7 Lithium 3 23 23 Na Na 11 11 11 11 11 11	Be Beryllum 4 24 Mg Magnesium 12											11 B Boron 5 27 A1 Aluminium 13	Carbon 6 Carbon 8 Silicon 114	Nitrogen 7 31 Phosphorus 15	16 Oxygen 8 32 Suffur 16	19 Fluorine 9 35.5 C1 Chlorine	Neon 10 Neon 40 Ar Argon 18
39 K Potassium 19	40 Ca Calcium 20	Sc Scandium 21	48 T Titanium	51 V Vanadium 23	Cr Chromium 24	Mn Manganese	56 Fe Iron	59 Cobalt	59 Nickel	64 Cu Copper 29	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine	84 Kr Krypton 36
Rb Rubidium	Strontium	89 ×	2r Zirconium 40	93 Nbb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	Ru Ruthenium 44	Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	Cadmium 48	115 In Indium	Sn Tn 50		128 Te Tellurium	127 I lodine 53	131 Xe Xenon 54
Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium * 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	1	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury 80	204 T t Thallium	207 Pb Lead		Po Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89	'														
*58-711 190-103	*58-71 Lanthanoid series	d series series		140 Ce Cerium	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thullum	Yb Ytterbium 70	175 Lu Lutetium 71
Key	т ×	a = relative atomic mass X = atomic symbol b = proton (atomic) number	ic mass ool ic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium	Neptunium	Pu Plutonium 94	Am Americium 95	Curium 96	BK Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101		Lr Lawrendum 103

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.